翻訳と辞書 |
Sturm separation theorem : ウィキペディア英語版 | Sturm separation theorem
In mathematics, in the field of ordinary differential equations, Sturm separation theorem, named after Jacques Charles François Sturm, describes the location of roots of homogeneous second order linear differential equations. Basically the theorem states that given two linear independent solutions of such an equation the zeros of the two solutions are alternating. == Sturm separation theorem ==
Given a homogeneous second order linear differential equation and two continuous linear independent solutions ''u''(''x'') and ''v''(''x'') with ''x''0 and ''x''1 successive roots of ''u''(''x''), then ''v''(''x'') has exactly one root in the open interval ]''x''0, ''x''1[. It is a special case of the Sturm-Picone comparison theorem.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Sturm separation theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|